Let $(X, \mathscr{A}, P)$ be a probability space and $\mathscr{B}$ a sub-$\sigma$-algebra of $\mathscr{A}$. Some results on regular conditional probabilities given $\mathscr{B}$ are proved. Using ...
The complement of set B, B’, contains all the elements that are not in set B. \(P’\) is the complement of set \(P\). The intersection of one set and the complement of another set identifies elements ...
一部の結果でアクセス不可の可能性があるため、非表示になっています。
アクセス不可の結果を表示する