The Poisson distribution is a special case of the binomial distribution that it models discrete events. It expresses the probability of a number of relatively rare events occurring in a fixed time if ...
ABSTRACT: Background: Bivariate count data are commonly encountered in medicine, biology, engineering, epidemiology and many other applications. The Poisson distribution has been the model of choice ...
This study extends the Poisson binomial distribution by introducing correlation and dependence between binomial events, enhancing its ability to capture complex event types and improving model ...
In this lab, we will discuss some of the above applications for binomial, negative binomial, and Poisson distributions. Examples are provided to illustrate how to use the tools in simple problems. For ...
This is a preview. Log in through your library . Abstract Count data often show a higher incidence of zero counts than would be expected if the data were Poisson distributed. Zero-inflated Poisson ...
The Canadian Journal of Statistics / La Revue Canadienne de Statistique, Vol. 15, No. 3 (Sep., 1987), pp. 209-225 (17 pages) A number of methods have been proposed for dealing with extra-Poisson ...
Results that may be inaccessible to you are currently showing.
Hide inaccessible results