Nuacht
The main advantage of using PCA for anomaly detection, compared to alternative techniques such as a neural autoencoder, is simplicity -- assuming you have a function that computes eigenvalues and ...
Principal component analysis (PCA) is a classical machine learning technique. The goal of PCA is to transform a dataset into one with fewer columns. This is called dimensionality reduction. The ...
Using the two principal components of a point cloud for robotic grasping as an example, we will derive a numerical implementation of the PCA, which will help to understand what PCA is and what it does ...
Principal component analysis is often incorporated into genome-wide expression studies, but what is it and how can it be used to explore high-dimensional data?
Boaz Nadler, Finite Sample Approximation Results for Principal Component Analysis: A Matrix Perturbation Approach, The Annals of Statistics, Vol. 36, No. 6, High Dimensional Inference and Random ...
Sphere-valued functional data, which are encountered, for example, as movement trajectories on the surface of the earth are an important special case. We consider an intrinsic principal component ...
Cuireadh roinnt torthaí i bhfolach toisc go bhféadfadh siad a bheith dorochtana duit
Taispeáin torthaí dorochtana