Advances in Applied Probability, Vol. 50, No. 1 (2018), pp. 272-301 (30 pages) We consider a family of directed exponential random graph models parametrized by edges and outward stars. Much of the ...
Incorporating structural features into random-graph calculations should bring theoretical models describing the properties and behaviour of complex networks closer to real-world systems. You have full ...
This lecture course is devoted to the study of random geometrical objects and structures. Among the most prominent models are random polytopes, random tessellations, particle processes and random ...
We study the uniform random graph Cn with n vertices drawn from a subcriticai class of connected graphs. Our main result is that the rescaled graph On ${C_n}/\sqrt n $ converges to the Brownian ...
Graph limit theory provides a rigorous framework for analysing sequences of large graphs by representing them as continuous objects known as graphons – symmetric measurable functions on the unit ...
When the mathematicians Jeff Kahn and Gil Kalai first posed their “expectation threshold” conjecture in 2006, they didn’t believe it themselves. Their claim — a broad assertion about mathematical ...
Discrete structures are omnipresent in mathematics, computer science, statistical physics, optimisation and models of natural phenomena. For instance, complex random graphs serve as a model for social ...
Six years ago, Afonso Bandeira and Shuyang Ling were attempting to come up with a better way to discern clusters in enormous data sets when they stumbled into a surreal world. Ling realized that the ...