Equations that have more than one unknown can have an infinite number of solutions. For example, \(2x + y = 10\) could be solved by: \(x = 1\) and \(y = 8\) \(x = 2 ...
Equations that have more than one unknown can have an infinite number of solutions. For example, \(2x + y = 10\) could be solved by: \(x = 1\) and \(y = 8\) \(x = 2\) and \(y = 6\) \(x = 3\) and \(y = ...
Okay, so I know that as soon as someone tells me what method to use, I'm gonna instantly remember it, but right now, I can think of only 1 way to solve simultaneous equations, and that doesn't work so ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results